
CPSC 436A: Finding Barrel Report

Bob Pham
University of British Columbia

Cathy Liu
University of British Columbia

Jiayin Kralik
University of British Columbia

Shibo Ai
University of British Columbia

1 Introduction

The Finding-Barrel project is a group-based assignment
focused on designing and implementing a custom operating
system based on the Barrelfish OS from ETH Zurich. This
report documents our system’s development process, detailing
our design choices, implementation, testing strategies, and
performance benchmarks across the core components of our
operating system.

Our team followed a flat organizational structure, allowing
each member to contribute broadly while enabling special-
ization for specific milestones. For each project milestone,
one team member typically led by proposing the initial
architecture and design. This proposal was then reviewed and
refined collaboratively, ensuring a well-rounded approach.
Once a design was finalized, tasks were divided among
team members, with some focusing on core implementation
and others supporting with testing and early planning for
subsequent milestones.

The following sections discuss our design strategy for each
component, the rationale behind our choices.

2 Overall Design

The overall design of the project is based on Barrelfish
OS, developed at ETH Zurich. Barrelfish is a microkernel
operating system with key features such as capabilities
system, remote procedure call, etc., and emphasizes
modularity and simplicity by pushing most services
into user space, leaving the kernel clean and relatively
lightweight. This separation of responsibilities ensures bet-
ter isolation, making the system easier to maintain and extend.

In line with Barrelfish’s philosophy, the design of key ser-
vices in our project, including the management of physical
memory, virtual memory, and processes, the spawning of pro-
cesses and cores, and sending messages between processes

and cores, prioritizes simplicity, robustness, and efficiency.
We have deliberately chosen straightforward yet highly man-
ageable data structures, such as linked lists and trees, to rep-
resent and manage critical system components. These data
structures allow us to balance ease of implementation with the
flexibility needed to address complex system requirements.

3 Milestone 1

In this section, we discuss the implementation of a memory
and capability management system for our operating system
project. Our design focused on simplicity and efficiency, aim-
ing to facilitate secure access control across system resources.

3.1 Data Structure
The core data structure that supports our memory manager is
a singly linked list. This linked list is used to represent the
whole of the available memory in our system. Each node in
the linked list carries the following meta-data:

1. The capability for the memory region that this node rep-
resents

2. A flag for whether or not a node is free or allocated

3. The base address for the memory region that this node
represents

4. The size for the memory region that this node represents

5. The parent capability for the original memory region
that the node was split from

6. The base address for the original memory region that
the node was split from

Further, the linked list created and managed such that the
nodes are arranged in ascending order by base address.

1

Figure 1: Linked List Memory Manager

We chose a linked list data structure to represent the physi-
cal address space, as it provides a clear and straightforward
way to model the generally contiguous and sequential nature
of physical addresses. Specifically, we opted for a singly
linked list for its simplicity, as it requires less overhead
in pointer management compared to a doubly linked list.
Reflecting on this choice, a doubly linked list might have
been advantageous in some scenarios, as it would allow
us to avoid managing a "prev" pointer manually during
traversal. However, both singly and doubly linked lists have
a complexity for O(n) traversal, so we concluded that the
difference in performance would be minimal.

Road Not Taken

Initially, we considered a tree-like structure in which the
parent node represented the memory region specified by the
original capability provided during mm_add. When memory
needed to be allocated through splitting and retyping, a child
node would be created for the respective parent node, record-
ing details like base address, size, and other relevant attributes.

However, we soon realized that maintaining a large par-
ent node after splitting was unnecessary. For instance, the
total size represented by the original parent node became less
useful once memory was split, as knowing the remaining
available bytes was sufficient. This tree structure introduced
redundant information and added complexity without provid-
ing significant benefits. As a result, we opted for a simpler
and more efficient design: a linked list.

3.2 Algorithms

This is a high-level overview of the different algorithms that
are used during the allocation and deallocation of memory in
the memory manager.

3.2.1 MM Add

During start-up, memory resources are given to the init
process. The mm_add function is responsible for adding new
memory resources, represented by a capability, to a memory
manager instance. A metadata node (mmnode) is allocated to

represent the new memory region, initialized with the capa-
bility’s base address, size, and other relevant information, and
marked as free. The function also checks for overlaps with
existing regions in the memory manager, preventing duplicate
entries for the same physical memory. If no overlap is found,
the new node is inserted into the linked list in ascending order
by base address to maintain an ordered structure.

3.2.2 Alloc/Alloc Aligned

Finding Available Addresses

The allocation of a slot is done using a first-fit approach.
When finding an available slot, we traverse the linked list until
we find a node that is marked as unallocated. We then do the
following checks:

1. Check if it is large enough to support the size of the
capability that we are trying to manage

2. If there needs to be special alignment (default to 4096),
see if the size of the gap is large enough to account for
alignment padding

3. If the allocation is for a specific range, check if the node
is within the range

4. Check if the memory region overlaps with any existing
allocations

Once the memory region is found, the node is split into
up to 3 parts as needed, where the segments could be:
the segment before the found memory spot, the aligned
memory spot, and any remaining memory after the aligned
region. These nodes are kept in ascending order of base
address. Once this is done, the capabilities for the aligned
and requested memory spot are retyped to match the aligned
memory region found.

We chose the first-fit algorithm primarily for its simplicity,
as it is straightforward to implement and manage. However,
we recognize that first-fit is more likely to fragment memory
at lower addresses in long term, which can lead to perfor-
mance degradation over time. Alternative algorithms, such as
worst-fit or next-fit, could offer improved performance in the

2

Figure 2: Example of Aligned Allocation

long term by distributing allocations more evenly across the
address space.

3.2.3 Free

When freeing memory, the following checks are made:

1. Check if the capability is valid

2. Traverse the linked list to locate the corresponding mem-
ory node, verifying it by confirming the base address and
size

3. If node is found, attempt to free it

When the node is found, it additionally checks that the
node is marked as allocated, if it is, we begin the free. Once a
node is freed and it’s meta-data is updated accordingly, we
attempt to merge the node with it’s neighbours (previous and
next nodes), if they are also free.

The merging operation, however, is restricted to nodes that
share the same original base, meaning they originate from the
same initial capability given during mm_add. This constraint
exists because each retype operation requires a unified source
capability, so merging across boundaries of different original
capabilities is disallowed. By limiting merges in this way, we
ensure compatibility with the retyping constraints.

We believe this merging strategy effectively reduces frag-
mentation in freed physical memory regions by combining
adjacent free nodes into larger contiguous blocks. Without

merging, each freed node would remain as a separate, smaller
chunk, making it difficult to allocate larger contiguous blocks
when needed. By merging adjacent free nodes that share the
same original capability, we consolidate free memory into
larger segments, and those segments can extended to ever
larger if their neighbours are freed later, thereby increasing
the likelihood of finding sizeable continuous memory regions
in future allocations.

3.2.4 Partial Frees

When handling a partial free, we first check if the memory
that is to be freed only partially matches the node. If yes,
the node is split into up to 3 parts along where the memory
matches the region that is being partially freed. Of these
splits, up to 2 segments are still allocated and unreturned,
and a single segment of the memory region is freed. If the
memory region that is freed has any adjacent free neighbours,
we attempt to merge them.

However, we acknowledge a drawback in this design: newly
retyped capabilities (as shown in Figure 3) cannot be returned
to the owner of the original retyped capability. After consid-
eration, we believe a better policy might be to mark partially
freed regions as "Partially Freed" and defer the destruction of
the capability until the entire region is freed. This way, only
when the full region becomes free is the capability destroyed,
and the entire block is marked as available.

3

Figure 3: High-level Idea of Partial Free

3.2.5 Slab Refill

The data structures for the memory manager is stored in
memory from a slab allocator, which relies on the memory
manager in order to refill itself. In order to prevent a refill
loop, first, refills are triggered early, leaving enough room
in the slab to allow the creation of the meta-data to perform
the refill. Second, a bit is set in the memory manager state to
indicate that a refill is in progress, and that any allocations
to the memory manager that happen while that bit is set are
to refill the slab allocator, and should not re-trigger the refill
process.

For this milestone, we set the slab refill threshold to four.
This threshold is based on the typical case where a single
call to mm_alloc_aligned may require up to two mmnodes:
one for alignment padding and another for any leftover mem-
ory. Therefore, having at least two slabs available is generally
sufficient. However, in rare cases, a slab_refill could trig-
ger a slot_refill (due to additional CNode requirement),
and slot_refill may call mm_alloc, which would need an
additional two mmnodes. To account for this, we ensure that
the slab count does not drop below four. This threshold is
increased in later milestones.

3.2.6 Metadata

The meta-data for memory manager is stored in the memory
manager instance. This includes:

1. A bit to indicate whether a refill is currently happening

2. The total amount of free memory remaining

3. The total amount of memory that has been allocated

3.3 Interaction With Other Components
The memory manager has the following interactions with
these systems

1. Slab allocator
Provides memory for metadata storage.

3.4 Limitations
Our straightforward design allows for efficient memory
management that’s easy to understand and maintain, which
streamlines both implementation and debugging. While this
simplicity offers clear benefits, there are some trade-offs in
terms of performance.

4

Firstly, since it is a singly linked list, when finding a
particular memory region corresponding to a node, we may
have to traverse the entirety of the linked list in order to find
the corresponding node. If there were n allocations, we would
need up to O(n) memory accesses in order to find the spot.

Secondly, since it is a singly linked list, once the node is
found, additional traversals may be necessary in order to
ensure that the newly created nodes maintain the linked-list
invariant that nodes are linked in ascending order of base
address, in addition to other checks such as overlapping
memory regions.

Finally, the policy of our system is currently based on the
assumption that only a single process is using the memory
regions. When a memory region is freed, the policy is such
that the region is freed for all processes that may have access
to it.

4 Milestone 2

In the early stages of developing our virtual memory man-
ager, we started with a very complex design that relied on
a single, intricate data structure stored in our paging state.
This design initially seemed appealing because, in theory, it
could allow for great average-time performance. However,
challenges arose, and we later pivoted to a simpler, easier-
to-understand design. Although the final design may be less
scalable in theory, it accomplishes what we intend.

4.1 Initial Approach

After milestone 1, we settled on a single n-ary tree data
structure. This structure was meant to map allocated, unallo-
cated, and lazy-allocated memory, capabilities, virtual address
ranges, and page table slots. The approach attempted to mimic
the structure of the physical page tables stored in memory,
while minimizing the meta-data/data-structures needed to rep-
resent unallocated pages.

4.1.1 Data Structure

Each node had the following information:

1. The starting index of this page in the parent’s page table
(it can span multiple slots)

2. Capability for the slot it is in, in the page table

3. Mapping capability for this slot

4. Pointer to the next available node

5. Pointer to the previous available node

6. Children page tables (ex. For the L0, it this will be the
L1 page tables)

7. The total number of pages available within this page’s
subtree

8. The number of slots the node represents within a page
table

9. Flag for whether or not this node is lazy allocated

With this approach, we used the same data structure to
track both the page table meta-data and the virtual memory
space. The meta-data would be represented by nodes at layers
0-3, while the virtual memory would be represented as the
children of the L3 nodes.

This approach had several benefits. For one, most lookups
required at most 4 memory accesses to find the physical page.
This was particularly useful for memory accesses, looking up
physical pages, and freeing nodes. When working with mem-
ory allocations that fit within a single L3 page, this approach
worked well because it generally also required at most 4 mem-
ory accesses. This was possible due to the meta-data that
tracked how much space was available within a subtree—if
there wasn’t enough memory in a subtree, we wouldn’t look
at it.

4.1.2 Problems

There were several problems with this data structure that we
had difficulties reconciling that ultimately lead us to decide
to move onto a different data structure. Namely:

1. Virtual memory is continuous

2. Too complex to keep track of meta-data

3. Many edge cases

The most difficult issue to address was that virtual memory
is continuous and can span multiple pages, such as L1, L2,
L3, etc. This data structure made it trivial to allocate n pages
within an L3 table, but spanning multiple L3/L2/L1 pages
was very difficult, since by how the tree is structured, memory
would naturally be split rather than be thought of as a "whole".

The complexity arose from the need to carefully track and
read the meta-data in order to handle spanning multiple pages.
When an allocation spanned multiple pages, the program
would need to examine the individual node as well as its
ancestors and other nodes at its level to determine if there was
enough room spanning multiple pages. Once this was done,
the node would need to be connected to all its ancestors, and
when freed, the meta-data for all ancestors would need to be
updated.

5

Figure 4: Initial Data Structure Tree

The updates to the meta-data were overly complex, and it
was very easy to introduce bugs. As a result, we decided to
abandon this data structure in favour of a simpler one.

4.2 Final Approach

The approach that we decided on used 3 data structures: one
to track the virtual memory space, one to track the page table
capabilities, and another to track the mapping capabilities.
While on paper the performance of this method should be
worse, it makes up for it in being easy to understand and
easier to bug fix.

4.2.1 Data Structure

Our virtual address data structure was a single doubly-linked
list that represented the entirety of our allocated/lazy-allocated

virtual memory space. In this data structure, a node of the
linked list keeps track of:

1. The starting virtual address that this node represents

2. The initial virtual address (for a group of nodes)

3. The size of the frame of allocated memory that the node
represents

4. A flag for whether or not the memory has been allocated,
or just lazy allocated

5. A pointer to the data structure that stores the mapping
capabilities for the frame, into their respective L3 tables

Compared to the previous data structure, this made it
much easier to find areas of memory that was available to be
allocated, as everything is continuous. It was also easier to do

6

Figure 5: Data structure to track virtual address space, and mapping capabilities

lazy-allocation with this data structure - we only allocate the
page that is currently being accessed, instead of the entirety of
the allocated memory. Additionally, any gaps between virtual
addresses between two nodes of the linked list are considered
to be free - not allocated and not lazy allocated. The initial
virtual address that is stored within each node allows us to tell
which is and isn’t part of "the same area of allocated memory".

Within these nodes, we also keep a reference to our second
data structure, which is a singly linked list that holds a
reference to the L3 table that the frame is mapped in, as well
as the mapping capability within that table. Using this, we
can quickly de-allocate a node from both the virtual address
linked list and the actual page tables.

Our page table related capabilities were stored in a separate
data structure, which was once again an n-ary tree. The data
structure had:

1. The capability of this page table

2. The mapping capability of this page table in it’s parent’s
slot

3. The index that this page table is in, in it’s parent

4. The size (currently unused, for super pages)

5. An array of pointers to all 512 of it’s children

This data structure made it trivial to look up the capa-
bilies required to allocate a frame - just decompose the
virtual address into page table indices, and traverse the
tree. Since every node has an array of pointers to it’s
children, it is also trivial to allocate new page tables, we sim-
ply check if a given slot is null, if yes, create a new page table.

While this data structure does accomplish our goals, it is
evidently limited by the doubly linked list data structure for
finding available virtual addresses. When allocating or freeing,
there is a O(n) cost of finding the node, where n is the number
of all things that have been allocated to virtual memory.

4.3 Algorithms

This is a high-level overview of the different algorithms that
are used for paging.

4.3.1 Alloc

For both paging_map_frame_attr_offset and
paging_map_fixed_attr_offset, an availabe virtual
address must first be found, and then mapped.

Finding Available Addresses

Finding virtual addresses is done via first-fit. When finding
an available address we traverse the vaddr linked list until we

7

Figure 6: Data structure to track page table capabilities

find a gap. We then do the following checks:

1. Check if it is large enough to support the size of the
frame that we are trying to allocate

2. If we are trying to allocate to a specific address, see if
the address is within the gap

3. If there needs to be special alignment, see if the size of
the gap is large enough to account for alignment padding

Mapping Addresses

When mapping an address to a frame, we do the following
steps using the virtual address, and the size of the data to
allocate (in pages):

1. Start at L0 in Tree data structure. Parse virtual address
for L1 index.

2. If L1 hasn’t been allocated, allocate it and link to L0

3. Lookup L1 slot, parse virtual address for L2 index

4. If L2 hasn’t been allocated, allocate it and link to L1

5. Lookup L2 slot, parse virtual address for L3 index

6. If L3 hasn’t been allocated, allocate it and link to L2

7. Map frame to L3. We map either the minimum of the size
of the frame in pages, or the number of pages remaining
in the L3

8. If the frame still hasn’t been fully allocated, update vir-
tual address + offset based on the number of pages allo-
cated, and repeat from step 1.
Ex. We were allocating a frame of size 10 pages at ad-
dress 0x1, and we were only able to allocate 1 page. We
would then recurse, attempting to map 9 pages at virtual
address 0x2

Note: As this is done internally by a helper function, it
is only called after an virtual addrss is found, and thus we

8

assume that the virtual address provided to be mapped is free.

Lazy Allocation

malloc and paging alloc are examples of where we do
lazy allocation. When doing lazy allocation, when requesting
a virtual address of size n, we will will follow the same steps
as with finding an available virtual address, but instead of
immediately mapping a frame to back the allocation, we set
the lazy allocated flag to true.

When a page fault occurs or someone tries to map to an
address (using paging_map_fixed_attr_offset) that is
within a lazy allocated region, we split up the node, and only
allocate the page that is being accessed. The new nodes that
are created from the split will all share the same initial virtual
address, so when it comes time to free or join nodes we can
tell what is grouped.

malloc

malloc, and morecore work with the following. Upon
initialization the minimum alignment is saved in the current
morecore state.

In our system, malloc lazy-allocates an arbitrary memory
region, rounded up and aligned to the minimum alignment.
This is done with the paging_alloc() function. malloc
returns memory regions arbitrarily from paging alloc,
rather than from a memory pool like the slab allocator. This
choice was simply made out of simplicity.

Page Faults

When a page fault occurs, the following happens:

1. Check if the fault is a page fault

2. Check if the virtual address is valid. This means that it is
within the user region of memory, and not a null pointer
(Virtual address 0x0)

3. If that is the case, we find the virtual address node. If
the node hasn’t been lazy allocated, this is also an illegal
access and we error

4. Once the node has been found, we check if it has already
been allocated. If it has, this is also illegal, and we error

5. Finally, once those checks pass, we allocate the page that
has been accessed. If the node representing the memory
region is larger, it is split

4.3.2 Free

When freeing a node, we first find it within the virtual address
linked list. Once the node has been found, we deallocate
the frame using the mapping capabilities and the page table
reference stored within the mapping node. We then clean-up
and free the mapping node linked list, and then we clean-up
and free the virtual address node.

If a virtual address node has been split due to lazy alloca-
tion, we will free those as well.

4.3.3 slab Refill

Since slab refilling ultimately relies on the virtual memory
manager, special care is taken to avoid an infinite refill loop,
where an allocation triggers a slab refill, which then triggers
another allocation, and so on.

To avoid this, we introduce a threshold to ensure enough
space is available for all necessary allocations in the virtual
memory manager when refilling the slab. Additionally, we
set a flag to indicate that a refill is currently in progress,
preventing the allocations within a refill from retriggering the
refill process.

Multiple data structures may trigger a refill at any time,
including the one in the memory manager (MM). A special
edge case occurs when creating metadata to track the mapping
of a new page table. In this case, the refill can interrupt the
current allocation process, and while refilling, may map the
new page table before the original program does. Therefore,
before any page table allocations, we need to check if the
tables have already been allocated, as they might be allocated
during our attempt, ensuring synchronization.

4.4 Interaction With Other Components

The paging and virtual address systems interacts with many
key components across the project, relying on several depen-
dencies to support memory management and address alloca-
tion:

1. MM (Memory Manager)
For the management of the ram capabilities used for
tracking meta-data, and creating frames

2. Morecore
For integration with malloc/free, which use the paging
functions to lazy-allocate and free memory

3. slab allocator
Provides memory for metadata storage, and paging sys-
tems are used to refill the slab when it fills up, without
causing a page fault.

9

4.5 Limitations

There are several limitations within the current system.

First, as previously mentioned, traversing the linked list is
costly. For allocation or deallocation, there is an O(n) cost to
locate the node, where n is the number of items allocated to
virtual memory. This implies that over the system’s lifetime,
as memory allocations increase, the cost of new allocations
and accesses will rise accordingly.

Second, individually allocated memory regions can
become fragmented if they were allocated lazily. Currently,
memory is accessed one page at a time. For a memory region
of size n pages, if every page is accessed, the region will be
split into n nodes, further increasing the linked list size and
degrading performance. Performance could be improved in
the future by merging nodes within a single allocated region.

Third, page tables, once created, are not destroyed. This
policy avoids the overhead of frequent table creation and
destruction, as well as potential synchronization issues.
However, it also means the system may "leak memory," or
maintain a larger runtime footprint than necessary. Future
improvements could include periodic garbage collection to
clean up unused tables.

Finally, the data structures for managing the virtual memory
space are relatively large. Specifically, the page table capabil-
ity tree has considerable overhead, as it includes pointers to
all 512 of its children. This is particularly impactful for the
L3 page tables, where many pointers remain unused. Over
the system’s lifetime, this could lead to significant memory
consumption.

4.6 Retrospective and Improvements

During this milestone, our team gained significant insights
into software design and decision-making. The tree data
structure, initially implemented in Milestone 1, was a
component we were invested in due to its initial success
and alignment with our project goals. While it performed
well and passed many tests, the emergence of increasingly
complex edge cases exposed its limitations. Over time,
the implementation became overly intricate, bloated, and
challenging to maintain or reason about effectively.

Ultimately, we made the decision to pivot and abandon the
existing design. This experience underscored an important
lesson about the sunk cost fallacy: in engineering and design,
it is sometimes more effective to pause, critically evaluate the
current approach, and decide whether to iterate or start anew.
This milestone highlighted the value of adaptability and the
importance of prioritizing simplicity and maintainability in

complex systems.
A tree-based structure, or a similar hierarchical data struc-

ture, presents the most promising approach for overcoming
the current limitations in our design, particularly in efficiently
managing address availability and allocation. By implement-
ing a tree structure, we can achieve faster lookups, insertions,
and deletions for memory addresses, as it naturally supports
hierarchical relationships and enables efficient segmentation
of the virtual memory space.

5 Milestone 3

Compared to the memory and virtual memory management
systems described in previous milestones, process spawning
offers less flexibility in design choices but demands precise
and correct implementation. The process-spawning function
must be accurate to ensure that each child process is equipped
with all necessary resources to initiate successfully.

5.1 Spawning
5.1.1 Data Structure

We begin by describing our spawninfo structure, which
serves as a management and tracking tool for the state and re-
sources involved in the spawning process. Beyond basic meta-
data such as the binary name and process state, spawninfo
includes fields dedicated to managing the child process’s capa-
bilities and virtual memory. These fields provide references to
critical components like the child’s root CNode, task CNode,
page CNode, dispatcher handle, entry point address, mem-
ory manager, paging state, etc., along with a slot allocator
for efficient capability allocation within the child’s CSpace.
The information encapsulated in spawninfo enables us to
modularize the spawning steps into distinct functions while
ensuring access to essential resources at different stages of
the spawning process.

5.1.2 Elf Parsing

Initializing the child process begins with parsing the elf image.
This is done by initially finding the required module from
multiboot image, mapping the elf image into the parent’s
address space, and parsing to verify that the magic bytes are
present. If the elf image is valid, we continue to attempt to
create the child.

5.1.3 Set-up CSpace

In this section, we introduce the setup of the Capability
Space (CSpace), a critical component for managing access
to resources in the Barrelfish operating system. The primary
objective of setting up CSpace is to ensure that the child
process has organized access to the necessary resources,

10

enabling it to spawn and execute successfully.

Creating Well-known CNodes We first begin by creating
L2CNodes in defined, well-known locations in the L1CNode.
This includes:

1. Top level page table

2. Root Taskcn

3. Root Alloc_0

4. Root Alloc_1

5. Root Alloc_2

6. Root Pagecn

After, we create the following capabilities in the Taskcn:

1. Selfep

(a) This is created by retyping the dispatcher capability
to ObjType_EndPointLMP

2. Rootcn

3. Dispatcher

(a) Created with a frame of size DISPFRAME_SIZE

4. Dispframe

(a) Created with a frame of size DISPFRAME_SIZE

5. Argspage

(a) Created with a frame of size ARG_SIZE

6. Earlymem

(a) Created with a ram capability large for bootstrap-
ping memory allocations (currently defined as 512
pages)

5.1.4 Set-up VSpace

In this section, we discuss the creation of the virtual address
space for a process in our operating system. The main goal
of setting up the virtual address space is to ensure that each
process has its own isolated memory region, by setting up an
appropriate child paging state

The virtual address space is initialized in the following
steps:

1. The child’s L0 page table capability is created, and
mapped to both the child CSpace, as well as the par-
ent. The parent requires the child’s L0 page table to
write into the child’s virtual address space.

2. The child’s paging state is initialized, and flagged as a
foreign paging state

5.1.5 Elf Loading

Once the virtual address space is established, the ELF is
loaded using elf_load with an allocated ELF allocator. The
ELF is allocated to a fixed address in the child process and to
an arbitrary location in the parent.

We begin by determining the size required to map the ELF
image, taking into account any additional space needed to
accommodate the fixed address in the child process, as the
address may not be page-aligned. Once the required size
and base address are determined, the ELF is mapped to the
child process’s virtual address space at the fixed location.
Subsequently, it is mapped to the parent’s virtual address
space, with the return address adjusted to account for any
alignment updates that were necessary.

5.1.6 Set-up Dispatcher

Next, the dispatcher is created. To create the dispatcher, a
frame is first allocated and mapped into the parent’s virtual
address space to store the child’s dispatch frame. The child
dispatcher is then created and mapped into the child’s virtual
address space.

Once this is complete, the dispatcher’s enabled and dis-
abled register save areas are updated with initial information
to prevent the process from immediately crashing. This
information includes:

1. Core id

2. Domain id

3. Udisp

4. Disabled Flag

5. Name (for debugging)

6. Starting Address for the program counter in the disabled
area

7. Initialize offset registers

5.1.7 Set-up Environment

Finally, this section details how the environment is set up.

Set-up Arguments

Arguments for the process are parsed and processed upstream
from this point, either passed via spawn_load_with_caps
or parsed from the multiboot command line. These arguments
are stored in the spawn_info structure and are retained until
the completion of prior setup steps, including configuring

11

capabilities, establishing the virtual address space, loading
the ELF, and setting up the dispatcher.

To pass the arguments from the parent to the child, the
parent must write the arguments into the child’s address space.
This is accomplished by mapping the child’s Argument Space
frame into both the parent’s and the child’s virtual address
spaces, and then modifying it from the parent’s space. This
allows direct modification of the frame, enabling the transfer
of arguments to the child.

Passing Capabilities

To allow the parent process to pass additional capabil-
ities to the child process at start-up, we faced the challenge
of ensuring the child could locate and use these capabilities
after spawning.

Initially, we attempted a simpler solution by using the
child’s slot allocator to assign slots and then copying the
capabilities directly into these slots. However, although the
capabilities were stored in the child’s CSpace, the child
process had no knowledge of their locations or quantity,
rendering them inaccessible.

Our final approach introduced a metadata frame in slot 1
of the page CNode. This frame was created immediately af-
ter setting up the child’s VSpace to ensure that slot 1 would
always be available and consistent. We treated this frame as
an integer array: the first entry stored the slot of the first capa-
bility (in the page CNode), and the second entry recorded the
total number of passed capabilities. The child process could
then map the frame from slot 1 in the page CNode, read the
metadata, and access the capabilities as needed. We verified
this approach by having the parent pass RAM capabilities to
the child, which the child could retype to frames, map, and
access successfully.

Figure 7: Passing Capabilities During Spawning

5.1.8 Start, Kill, Resume, and Suspend

For the following process functions, we simply check if
the process is in the correct state, and if it is, we call the

corresponding invoke_dispatcher_* function, and update
the spawn info struct with the new state if successful.

Note that the handlers for the invoke_dispatcher_*
functions for Kill, Resume, and Suspend operations are also
implemented by us. The Kill and Suspend actions are accom-
plished by removing the dispatcher from the run queue, which
is organized as a linked list under the hood. In contrast, the
Resume action works by adding the dispatcher back to the
queue. Notably, Kill and Suspend involve similar operations,
but they are differentiated by setting the spawn_info struc-
ture to different states. Only a spawn_info in the "Suspend"
state is permitted to be resumed in the future.

5.2 Process Management
5.2.1 Data Structure

The list of current processes are stored in a doubly linked list.
In the doubly linked list, the following meta-data is tracked:

1. Pointer to spawn info struct for the process

2. The name of the process (up to 128 characters)

3. The length of the name of the process

4. The core id that the process is running on

The choice of a doubly linked list was made due to its
simplicity and efficient node removals, which may occur
frequently. Including the length of the name, in addition to
the name itself, provides a more efficient initial check for
name equality before performing the final comparison.

Meta-data related to the processes themselves is not
stored in the nodes, as it can easily be obtained from the
spawn_info structure. The spawn_info structure is stored
in the node rather than a process status node because it
is straightforward to convert a spawn_info structure to a
process status node, and the spawn_info is already required
for auxiliary functions like suspending a process.

When creating a new process is created, it has it’s node
created with the relevant meta-data, and then it is appended
at the front of the list.

PIDs

During this milestone, PIDs are assigned using an in-
crementing counter stored in a global variable. Each time
a new process is spawned, it uses the current value of this
counter and increments it. Later on in milestone 6, we would
change this to have the most significant bit be used to indicate
which core the process is running on.

12

Roads not taken

The choice to use a linked list was purely due to it’s sim-
plicity, and similarities with other parts of the system, but
comes at the cost of performance. There were some other
roads that were considered, but not followed through on:

1. Red-Black / AVL Tree

Using an AVL tree is an appealing choice be-
cause they are also relatively simple data structures.
With an AVL tree, the value/weight of a node would
simply be the PID, and given the characteristics of a
AVL tree, would allow it to have an average insertion,
removal, and retrieval cost of O(logn). However, given
how newly added pid’s will only ever increase, this
data structure will frequently have to re-balance it-
self, which may degrade the potential performance gains.

Thus, given that with how our PID’s are allocated, and
the added complexity of implementing an AVL tree, we
decided not to pursue this option.

2. Hash Table / Hash Map

Hash tables were also an appealing choice. A po-
tential design could have used the PID and the meta-data
struct as the key and value respectively in a key value
pair. Depending on library implementation, this could
give an average constant time read, write, removal
(O(1)). Unlike trees, most library implementations
wouldn’t have their performance degraded by our PID
allocation policy as well.

The difficulty for hash tables, and why they were not
pursued, was because of the difficulty to iterate through
all keys/values within the data structure. Most of the
libraries that we explored, and the one provided in
the Barrelfish repository, make this not as trivial as in
other higher-level languages. Thus, if we were to use a
hashmap, the operations to find all running processes, or
processes with a specific name become much harder.

5.2.2 Algorithms

The algorithms used for process management are relatively
simple compared to other components of the operating
system.

When obtaining a process by PID or name, the linked list
is traversed until the process with the matching meta-data is
found, at which point it is returned. Similarly, for command-
ing processes, the list is traversed until the process with the
matching PID is found, and the corresponding command is

issued. If the process is killed and the operation is successful,
it is removed from the list.

When aggregating running processes, the linked list is first
traversed to count the number of running processes, in order
to get the number of running processes, and allocate enough
memory to store the list of processes. The list is then traversed
a second time to add the running processes to the list.

5.3 Interaction With Other Components
The process spawning interacts and uses many different parts
of the system. In particular, it interacts with:

1. MM (Memory Manager)
The memory manager is used to create the new memory
manager for the child process. This is also used under
the hood for the management of the many frames that
are created to be passed to the child

2. Paging Systems
The paging system is used, in conjunction with higher-
level abstractions like malloc to allocate memory for
meta-data. In addition, paging functions are used directly
to be able to map elf’s to specific addresses, or to allocate
and map frames directly without having to pagefault.

5.4 Limitations
Since there were fewer design decisions made for process
spawning, the limitations focus primarily on process
management.

First, PIDs cannot be reused sustainably. Once a PID is
allocated, it cannot be reused by another process until the
system is restarted, as it is a global, incrementing variable.
While the system is unlikely to run out of PIDs, given that it
would require spawning 264 − 1 processes, this design also
prevents spawning a process with a predetermined PID.

Second, the linked list data structure requires multiple
memory accesses to look up processes, which becomes a
concern as more processes are spawned. Additionally, since
earlier processes typically finish first, and new processes
are appended to the front of the list, this could lead to an
expensive remove operation.

Third, the choice of 128 character max process name was
arbitrary, it may be beneficial in the future to instead allow
for arbitrarily long names, stored on the heap

Finally, aggregating the list of currently running processes
requires two traversals of the list: one to count the processes
and another to allocate and map them. An alternative approach
could involve tracking the total number of processes managed,

13

regardless of their state, and allocating excess memory to
eliminate the need for a second traversal. This would provide
more than enough space, but at the cost of precision.

5.5 Retrospective and Improvements
During this milestone, our team developed valuable insights
into the complexities of software design and debugging. The
process of spawning a new process proved to be intricate,
with numerous small bugs emerging that hindered successful
spawning. This experience highlighted the importance
of debugging within complex systems, particularly when
dealing with components that operate as “black boxes”. It
also underscored the criticality of writing code that is both
maintainable and easy to debug.

Moreover, this milestone provided a practical lesson in
task division. Despite the numerous dependencies between
different system components, once the design was solidified,
we were able to effectively partition tasks for independent
functions, including parts of the initialization process and
the process management wrapper. This approach not only
facilitated smoother implementation but also enhanced our
ability to isolate and resolve issues efficiently.

As for future improvements, the change that would
have the most impact would be to migrate from the
linked list approach to storing running process metadata
to one of the alternative data structures suggested in our
report. Unlike with memory management and virtual
address space management, the sequential nature of a
linked list does not have any intrinsic benefit design wise,
other than being simple. If in the future performance be-
comes an issue, this would be the area that would be explored.

For future improvements, the most impactful change would
be transitioning from the current linked list-based approach
for storing running process metadata to one of the alternative
data structures discussed in this report. Unlike memory man-
agement and virtual address space management, where the
sequential nature of a linked list offers certain design advan-
tages, the linked list does not provide any intrinsic benefits in
the context of process management, other than its simplicity.
Should performance become a concern as the system scales,
this area would be a primary focus for optimization. By adopt-
ing a more efficient data structure, such as a hash table or
balanced tree, significant improvements in process lookup,
insertion, and deletion times could be realized, thus enhancing
overall system performance.

6 Milestone 4

In this section, we detail the implementation of inter-process
communication (IPC) within a single core using Remote Pro-

cedure Call (RPC) built on top of Lightweight Message Pass-
ing (LMP) channel. Developing a fully functional LMP-based
RPC system is a complex process, requiring careful attention
to nuances such as multithreading safety. To manage this
complexity, we began with a simple and minimal design, in-
crementally refining and expanding it to achieve a robust and
efficient solution.

6.1 Data Structure
The aos_rpc structure serves as the core data structure for
this milestone, encapsulating the necessary information for
a child process to communicate with the init process. De-
signed for simplicity and clarity, it includes the following
fields:

1. LMP Channel: The communication channel established
for the child process to interact with the init process.

2. Waitset: The default waitset associated with the channel,
used for managing asynchronous communication.

3. Thread Condition Variable: Ensures multithreaded
safety for RPC operations; further details are provided
in Section 6.15.

4. RPC Initialization Boolean: A flag indicating whether
the handshake with the init process has been completed
(i.e., the handshake has been sent and the acknowledge-
ment received). This is discussed further in Section 6.4.

6.2 AOS RPC Set-up
Before sending messages between processes, we must first set
up the LMP channel for child processes. After the spawning
process completes—but before the dispatcher is invoked
to make the child process runnable—the init process
creates an LMP channel specifically for THIS child process.
During this step, a new init local endpoint is created using
cap_selfep as a template, with a dedicated buffer minted
for the endpoint. The init local endpoint capability is then
copied into the child’s CSpace at a well-known slot, enabling
the child process to establish its LMP channel.

Once the child process begins execution, it creates its own
LMP channel, mints buffer to its local endpoint, and uses
the init’s local endpoint (stored in a well-known slot in
its CSpace) as the channel’s remote endpoint. A handshake
is required to make the channel bidirectional, allowing
init to obtain the child process’s local endpoint (detailed
in Section 6.4). This setup ensures that each child process
has a dedicated bidirectional LMP channel with the init
process, with endpoint capabilities exclusively bound to
their respective channels, thereby avoiding communication
interference between init and multiple child processes.

14

Road Not Taken

At the beginning, we planned to establish only one LMP
channel from init to ALL child processes. This would be
achieved by using a global variable to track whether the LMP
channel had already been set up for init. Once the channel
was created after spawning the first child, no additional LMP
channels would be created for any subsequent child processes
(meaning that only one init local endpoint will be created).

In this design, one of the critical points was ensuring that
init could get the correct child process’ endpoint it needs to
talk to. To accomplish this, we intended to extend the process
management data structure from the previous milestone to
include each child’s local endpoint. During the handshake,
a child process would send its PID and local endpoint to
init, which would store the information in the process
management node corresponding to that PID. For subsequent
messages, the child would include its PID, allowing init to
retrieve the correct node and bind the appropriate endpoint
for replies.

This design was discarded for two main reasons:

1. It introduced an additional layer of traversal during mes-
sage sending, unnecessarily increasing complexity and
degrading performance.

2. Using a single init local endpoint for all child processes
created a higher likelihood of buffer management issues.
Since the buffer is tied to the endpoint, simultaneous
message sending from multiple child processes could
result in buffer conflicts.

6.3 Overall Design
This milestone implements several RPC functions, most of
which follow a similar pattern. In this section, we provide a
brief overview of the general flow of the RPC implementa-
tion from the perspectives of both the init process (acting
as the server) and the child processes (acting as clients). De-
tailed descriptions of each RPC function are provided in the
subsequent sections.

6.3.1 Channel

We opted to use a single channel between init and each
child process for all types of RPC requests, meaning that
we do NOT distinguish between separate channels for init,
memory, process, and serial communications.

We believe that this approach is simpler, more manageable,
and reduces the likelihood of multithreading issues arising
from managing multiple channels.

6.3.2 Message Structure

We begin by describing the data structure used for RPC
messages. Sending a message through an LMP channel re-
quires one of nine functions, lmp_chan_sendX, ranging from
lmp_chan_send0 to lmp_chan_send8, each capable of send-
ing X words of payload, where each word is 64 bits. To ac-
commodate this, we carefully select the appropriate number
of words (X) and treat the payload of each message as a struc-
tured data format comprising the following fields:

1. Type of the RPC message: The first word of the LMP
payload specifies the type of the RPC message. This in-
cludes function identifiers and acknowledgements (e.g.,
AOS_RPC_HANDSHAKE, AOS_RPC_HANDSHAKE_ACK, etc.),
which will be introduced in the following sections.

2. RPC message-specific payload: Depending on the
RPC type, this payload occupies 0 to 7 words and con-
tains data relevant to the function (e.g., a number for
aos_rpc_send_number).

6.3.3 Child Processes as Clients

Child processes act as clients, requesting services from
the init process via RPC function calls. The complete
workflow of an RPC function call consists of two main
components: aos_rpc_* and aos_rpc_*_recv_handler.
In our design, each aos_rpc_* function has its own dedicated
aos_rpc_*_recv_handler, waiting for the acknowledge-
ment specific to that function.

aos_rpc_*

The aos_rpc_* functions serve as both the messaging
layer and the transport layer. These functions generally
consist of the following key steps:

1. Pack the message for transmission.

2. Allocate receive slot if necessary.

3. Register the corresponding receive handler as a closure.
This closure includes the receive handler and an argu-
ment, which must contain at least the aos_rpc structure.
If the associated aos_rpc_* call requires a return value
to be written to a pointer, the pointer is also encapsulated
within the argument.

4. Send the message through the LMP channel.

5. Wait on the default waitset for the channel.

aos_rpc_*_recv_handler

Once a message arrives at the LMP channel, an event is
raised in response to the activity, triggering the receive handler

15

Figure 8: LMP Channel Initialization Comparison

Figure 9: Message Structure Example

registered in the previous step. On the client side, the receive
handler typically includes the following key steps:

1. Unpack the argument passed to the receive handler and
retrieve the aos_rpc structure, which contains the LMP
channel.

2. Receive the message from the LMP channel.

3. Verify the acknowledgement type in the received mes-
sage.

4. If the function requires a return value, unpack the return
pointer from the argument, extract the return value from

the received message, and write the value to the pointer.

Note that the receive handler is automatically de registered
after it is triggered. On the client side, the receive handler is
not re-registered until the next aos_rpc_* function call. This
design ensures that the channel is associated with a dedicated
receive handler for each specific use case, allowing messages
to be processed as needed.

6.3.4 Init Process as Server

The init process acts as a server, continuously listening
to channels and waiting for incoming messages. When
a message arrives, a centralized server receive handler is
triggered to process various types of requests sent by clients.

recv_handler

The init process’s receive handler is implemented as a
large switch statement that receives and unpacks the message,
switching on the first word of the message payload (see Sec-
tion 6.3.2). For each case in the switch statement, the receive
handler performs the following steps:

1. Processes the incoming request based on its type.

2. Packs the acknowledgement message.

16

3. Sends the acknowledgement message back to the client.

Unlike the child process’s receive handler, which is spe-
cific to each aos_rpc_* function and de registers after being
triggered, the init process re-registers its receive handler
each time it is invoked. This ensures that the init process
is always ready to handle incoming messages and respond
to any type of request. This distinction reflects the different
roles: the child process (as a client) sends requests as needed,
while the init process (as a server) remains continuously
available to respond.

6.4 Handshake
The handshake is used to allow the child process to send its
local endpoint to the init process. When init first sets up
the LMP channel for the child, the child process has not yet
started running. As a result, init does not have the child’s
local endpoint and must initially set the remote endpoint
of the channel to NULL_CAP. Once the child process starts
running, it performs the handshake by sending its local
endpoint to init. This enables init to bind the child’s
local endpoint as the remote endpoint of its LMP channel,
completing the bidirectional channel setup.

In our current design, the aos_rpc structure is initialized
with the "RPC Initialization Boolean" set to false (as
described in Section 6.1). During the first aos_rpc_* call,
the child process performs a handshake, which also sets the
boolean to true. This ensures that subsequent aos_rpc_*
calls bypass the handshake step.

The client message consists of the following fields: a
message type (AOS_RPC_HANDSHAKE) and a child’s local
endpoint capability.

The server message consists of the following field: an ac-
knowledgement type (AOS_RPC_HANDSHAKE_ACK).

6.4.1 Road Not Taken: Where to put handshake?

Initially, we believed it made sense for a child process, upon
being spawned and starting execution, to immediately send a
handshake to its parent to establish the bidirectional LMP
channel. As a result, we embedded the handshake process
within the initialization of aos_rpc (mentioned in Section
6.4).

However, this approach caused issues during the M3 test
script. In the spawning process milestone, child processes are
designed to run without requiring inter-process communica-
tion. The test script exits the system before the init process
begins listening to the waitset. This created a problem because
the child process automatically initiated the handshake during
initialization, even when no communication was necessary.

Consequently, the acknowledgement could not be received,
and no child process proceed.

6.5 Send Number
Sending a number is the simplest form of an RPC function
call. The client sends a number to the server, the server echoes
the received number, and then sends an acknowledgement
back to the client.

The client message consists of the following fields: a
message type (AOS_RPC_SEND_NUMBER) and a number.

The server message consists of the following field: an ac-
knowledgement type (AOS_RPC_SEND_NUMBER_ACK).

6.6 Send String
Due to the limitation of lmp_chan_sendX, where at most
eight 64-bit words can be sent at a time, longer strings must
be broken into smaller pieces. In our current design, the
string is divided into chunks that fit within the word limit.
Each chunk is packed and sent in a loop until the end of the
string is reached. On the server side, the chunks are unpacked,
reconstructed, and the string is displayed.

The client message consists of the following fields:
a message type (AOS_RPC_SEND_STRING), a chunk size
indicating the length of the current chunk, and up to six
words of payload.

The server message consists of the following field: an ac-
knowledgement type (AOS_RPC_SEND_STRING_ACK).

6.6.1 Drawback

We acknowledge that this design performs well for small
strings that can be delivered in a single message. However, it
is less effective for large strings. The server (init process)
treats each chunk as an independent message and displays
them separately, rather than recognizing them as parts of a
single string, which may not align with the intent of the client
process.

6.6.2 Possible Fix: Sending Large Strings

Although sending large strings is not currently supported in
our system, we collaboratively devised some feasible plans
to address this limitation. Two potential approaches were
identified as relatively straightforward to integrate into our
existing system:

1. Create a string buffer for each thread on the init
side.

17

This approach involves extending the process management
linked list to include an additional linked list, where each
node corresponds to a thread. When a thread within a child
process sends a large string, it includes additional metadata
alongside the current fields (type and chunk size): its PID,
thread ID, and a flag indicating the end of the string.

Upon receiving a part of a large string, the init process
traverses the process management list to locate the appropriate
thread buffer. The payload is then accumulated into this buffer.
Once the buffer receives the chunk marked with the end-
of-string flag, the init process reconstructs the full string,
displays it, and cleans up the buffer to prepare for future
messages.

Figure 10: Large String with Thread Buffer

2. Send a frame capability.

In this approach, the child process allocates and maps a
frame into its own address space, writes the string into the
frame, and then sends the frame’s capability to the init pro-
cess. Upon receiving the capability, the init process maps
the frame into its virtual address space, reads the string from
the frame, displays it, and unmaps the frame when finished.

6.7 Serial RPC
The serial_getchar and serial_putchar RPC calls
handle basic serial communication between the client and
the server. Both involve simple interactions, where the server
processes a single character and responds appropriately.

Serial Get Character: In the serial_getchar RPC
call, the client requests a character from the server.
The server reads the character from the console and
responds with it. The client message consists of a
message type (AOS_RPC_SERIAL_GETCHAR), while the
server message includes an acknowledgement type
(AOS_RPC_SERIAL_GETCHAR_ACK) and the character read
from the console.

Serial Put Character: In the serial_putchar RPC
call, the client sends a character to the server. The server
prints the character to the console and responds with an ac-
knowledgement. The client message consists of a message

type (AOS_RPC_SERIAL_PUTCHAR) and the character to be
printed. The server message contains an acknowledgement
type (AOS_RPC_SERIAL_PUTCHAR_ACK).

6.8 RAM Request

In the ram_request RPC call, the client requests a RAM
capability from the server, specifying the minimum size and
alignment requirements. The server allocates the requested
RAM, sends the corresponding capability back to the
client, and includes the size of the allocated memory in the
acknowledgement.

The client message consists of the following fields: a
message type (AOS_RPC_MEMORY_REQUEST), the requested
size in bytes, and the required alignment.

The server message consists of the following fields: an ac-
knowledgement type (AOS_RPC_MEMORY_REQUEST_ACK), the
allocated capability, and the size of the allocated memory in
bytes.

6.9 Spawn With Command Line/Default Argu-
ments

Both functions enable a client to request the spawning of a
new process, specifying either a full command line or default
arguments.

Spawn with Command Line: The Spawn with Command
Line RPC call allows the client to request a new process
to be spawned using a specified command line, including
arguments. The client message includes the message type
(AOS_RPC_PROCESS_SPAWN_CMDLINE), the length of the
command line string, and up to six words of packed characters
representing the command line. The server, upon receiving
the message, unpacks the command line, spawns the process,
and responds with an acknowledgement message containing
the PID of the newly spawned process.

Spawn with Default Arguments: The Spawn with
Default Arguments RPC call offers a simpler way to spawn
a new process using only the binary’s path and default
arguments. The client message includes the message type
(AOS_RPC_PROCESS_SPAWN_ARGS), the length of the binary
path string, and up to six words of packed characters
representing the path. The server unpacks the path, spawns
the process with default arguments, and sends an acknowl-
edgement message with the PID of the spawned process.

18

6.10 Spawn With Capabilities

In the spawn_with_caps RPC call, we encountered the
challenge of passing multiple capabilities from the child
process to the init process using an LMP channel, which
can only pass a single capability at a time. To resolve this,
the child process creates a dedicated L2 CNode, copies the
desired capabilities into that CNode, and sends the CNode’s
capability over the LMP channel.

On the server side, the init process unpacks the received
capability, allocates a slot in its L1 CNode within its CSpace,
and copies the L2 CNode’s capabilities into that slot. It then
reconstructs the array of capabilities and spawns the process
using the reconstructed array.

The client message includes the following fields: a mes-
sage type (AOS_RPC_PROCESS_SPAWN_CAPS), the number of
arguments, up to six words of payload for the arguments, and
the capability for the dedicated L2 CNode.

The server message consists of an acknowledgement type
(AOS_RPC_PROCESS_SPAWN_CAPS_ACK) and the PID of the
newly spawned child process.

6.11 Process Management

Process management functions with RPC follow a consistent
pattern: the init process serves as the process manager.
When a child process needs process management information,
it invokes the appropriate client-side process management
function, which sends a message with a message type
AOS_RPC_PROCESS_GET_*. The message payload contains
all relevant details, such as the name or PID of the process
being queried.

Upon receiving the message, the init process calls the
corresponding process management functions implemented in
the previous milestone to retrieve the requested information. It
then sends the collected information back to the client using a
message type AOS_RPC_PROCESS_GET_*_ACK. On the client
side, the receive handler unpacks this message and returns the
requested information to the caller.

6.12 Suspend and Resume

Suspend: The suspend RPC call pauses a process by sending
its PID along with the message type (AOS_RPC_SUSPEND)
to the init process. Upon receiving the request, the init
process halts the target process by removing its dispatcher
from the scheduler and responds with an acknowledgement
(AOS_RPC_SUSPEND_ACK).

Resume: The resume RPC call restarts a previously
paused process by providing its PID and the message type

(AOS_RPC_RESUME). The init process reinserts the dis-
patcher into the scheduler, allowing the process to resume,
and sends an acknowledgement (AOS_RPC_RESUME_ACK) to
the client.

6.13 Wait
To implement the wait functionality, we extend the process
management structure by attaching a waiting process list to
each process management node. When process A attempts to
wait on process B, it registers itself with the process manager
by adding a node to the waiting process list associated with
process B’s management node. This wait node contains
process A’s LMP channel, enabling the process manager to
trigger process A in the future by sending a message to this
dedicated LMP channel (see Section 6.13).

As with all other RPC function calls, the waiting process
sends a message to the init process and then waits for a
response on the default waitset. However, in this case, the
init process registers the waiting process without immedi-
ately sending a response. Instead, the child process effectively
waits by remaining blocked on the response message, allow-
ing the wait functionality to be seamlessly integrated into the
existing RPC mechanism.

The client message includes the following fields: a
message type (AOS_RPC_WAIT), the PID of the process that is
waited, and the PID of the process that is waiting.

The server message consists of an acknowledgement type
(AOS_RPC_WAIT_ACK) and the exit status of the process that
has been waited.

6.14 Exit, Kill and Kill All
The exit, kill, and kill all functions handle scenarios where a
process terminates or one process terminates another process
or multiple processes. In all cases, the init process as the
process manager stops the execution of the target process(es)
by removing its dispatcher from the scheduler.

Exit: The exit RPC call is used to notify the process
manager when a process terminates gracefully. Unlike
other RPC calls, this function does not involve waiting
for a response, as the terminating process can no longer
handle it. The exit RPC is automatically triggered when a
process ends, sending a message containing the message type
(AOS_RPC_EXIT), the PID of the terminating process, and its
exit status to the process manager.

Kill and Kill All: In the kill and kill all RPC calls,
the client sends the PID or name of the target process(es)
along with the appropriate message type (AOS_RPC_KILL
or (AOS_RPC_KILL_ALL)). The init process locates the

19

Figure 11: Passing Capabilities in RPC Spawn With Capabilities

Figure 12: Extended Process Management Structure for Waiting

specified process(es), terminates them, and responds with the
appropriate acknowledgement message (AOS_RPC_KILL_ACK
or (AOS_RPC_KILL_ALL_ACK)).

Once a process is terminated, the process manager traverses
the waiting processes attached to the terminated process. It
sends a message with the type AOS_RPC_WAIT_ACK to the
recorded LMP channels of the waiting processes, waking
them up. This allows the waiting processes to receive the
expected message and resume execution (also see Section
6.12).

6.15 Thread Safety
The issue of multithreading arose toward the end of the devel-
opment process when we began testing under a multithreaded
context, where multiple threads attempted to send messages

to the init process simultaneously. This uncovered problems
we had not previously considered.

6.15.1 Problems

In the current workflow, any thread that wants to make an
RPC call to the init process must register a dedicated
receive handler, send the message, and wait for a response.
Since the response may not arrive immediately, a call to
event_dispatch is made, which waits for the response on a
waitset and yields the thread until the response is received.
Up to this point, everything works as expected. However, if a
second thread attempts to make an RPC call while the first
thread is still waiting for a response, the process fails.

The failure occurs because the response for the first thread
has not yet arrived, and thus the receive handler on the pro-

20

cess’s LMP channel remains registered. When the second
thread attempts to register a new receive handler on the same
channel, it results in an error since a channel can only have
one registered handler at a time, and all threads in a process
share the same channel.

6.15.2 Solution

To address this issue, we implemented a solution using a
conditional variable stored in the aos_rpc structure. At the
beginning of any RPC function call, a thread attempting to
register a dedicated receive handler must first wait on the
conditional variable. If the process’s LMP channel already
has a receive handler registered, the thread cannot proceed; it
must wait until the channel is free.

The thread that holds the conditional variable performs
the RPC call and waits for a response. While other threads
wait for the channel to become available, the register state
remains locked, preventing additional RPC calls from being
attempted. When the response arrives, the registered receive
handler is triggered and subsequently deregistered. At this
point, the conditional variable signals the next waiting thread,
allowing it to proceed and register its receive handler.

This approach ensures thread safety by enforcing that only
one thread at a time can use the LMP channel to communicate
with the init process, effectively resolving the multithread-
ing issue.

6.16 Interaction With Other Components

The RPC system built on top of the LMP channel interacts
with several key components of the system, including:

1. MM (Memory Manager) and malloc
The memory manager and malloc are essential to the
implementation of RPC. For instance, the RAM request
function relies on the memory manager to allocate a spec-
ified amount of memory. Additionally, malloc is widely
used across the system to allocate memory chunks as
needed for various operations.

2. Spawning
The RPC mechanism depends on the creation of an LMP
channel during the process spawning phase. As part of
the spawning process, the endpoint capability for the
init process is stored in the newly spawned child’s
CSpace, enabling communication between the two pro-
cesses.

3. Process Management
To support process management through RPC function
calls, the init process acts as the process manager.

When it receives process management requests, it col-
lects the necessary information and responds to the client
process.

6.17 Limitations
Unlike previous milestones, where system designs had clear
strengths and weaknesses, the limitations of our current
implementation of RPC over LMP primarily stem from a
lack of structured design.

Overall, the design of RPC over LMP is raw, flat, and lacks
clear abstractions or layered separation. The messaging layer,
responsible for marshaling messages, and the transport layer,
responsible for sending messages, are heavily conflated. This
blending of responsibilities makes the system difficult to
extend or adapt. For instance, if we were to replace the trans-
port layer or switch to a different communication mechanism,
such as a different channel type or shared memory, the entire
implementation would require substantial changes, since
these layers are not independent. A well-designed system
would decouple these layers, enabling cleaner interfaces
and greater flexibility for extending or upgrading the system
without disrupting existing functionality. Addressing this
design flaw could significantly improve the modularity,
maintainability, and scalability of the RPC system.

Additionally, using a single channel between the init pro-
cess and each child process can overwhelm the init process
with diverse types of requests, creating a bottleneck. In the
future, a more scalable approach could involve setting up
dedicated processes, such as a memory server, serial server,
and process server, to handle specific types of requests. This
would distribute the workload, reduce the burden on the init
process, and improve overall system performance.

6.18 Retrospective and Improvements
This milestone was a particularly chaotic time for our team,
but it provided invaluable insights into the balance between
design and implementation. While diving directly into
implementation can seem appealing due to the immediate
results it yields, neglecting proper design and abstraction
creates significant long-term challenges. Without thoughtful
design, problems are often oversimplified, leading to systems
that are difficult to extend, maintain, and manage. This
milestone highlighted the importance of allocating sufficient
time for planning and designing robust abstractions before
jumping into implementation, ensuring the system is prepared
to handle future complexities.

Beyond technical challenges, this milestone also deepened
our understanding of team management and dynamics,
particularly as the term progressed and workloads increased.

21

Coordinating schedules, managing task dependencies,
and maintaining effective communication became more
challenging. By navigating these challenges, we improved
our ability to distribute workload effectively and maintain
productivity under pressure.

The most impactful technical takeaway from this milestone
is the need to introduce a layer of abstraction to separate the
messaging layer and the transport layer. By doing so, we could
improve modularity, making the system more flexible and eas-
ier to extend. For instance, with a well-defined messaging
layer, replacing the transport layer or adding new commu-
nication mechanisms would require minimal changes. This
separation would also streamline debugging and testing, as
each layer could be evaluated independently. Implementing
such an abstraction in future work would greatly enhance the
maintainability and scalability of the system.

7 Milestone 5

The milestone 5 can be divided into two parts: booting a
second core and setting up initial inter-core communication.
The first part is considered similar to milestone 3, which re-
quires precise and correct implementation of procedures. The
second part, inter-core communication, leaves significant free-
dom in the implementation choices, and the design decisions
are explained below.

7.1 Booting a Second Core
7.1.1 Preparing Data Structures

The process starts by creating data structures to boot a
core. There are four data structures that need to be created:
armv8_core_data, kernel stack, URPC frame, and kcb.
Although the book suggests it is possible to create a big frame
containing the first three data structures, separate frames were
chosen for easier debugging. For kcb only, it was retyped
to type ObjType_KernelControlBlock as instructed in the
book.

7.1.2 Preparing ELFs

The ELF loading process is:

1. Locating the ELF image’s capability through its path
from the bootinfo

2. Loading the ELF image into memory

3. Finding the ELF Entry Point

4. Loading the ELF into memory

5. Relocating the ELF

There are three differences from milestone 3’s ELF loading
procedure:

1. Finding Entry Point: The entry point of the ELF im-
age needs to be manually found by supplying the entry
function’s name.

2. ELF Loading: The ELF loading process is simpler than
milestone 3 as there is only one mappable region inside
each ELF image. This time only a simple function call to
‘load_elf_binary‘ is needed without requiring a callback
function.

3. ELF Relocation: The kernel driver ELF is relocated
after loading, as it will run in the kernel virtual address
space, instead of the normal address space it was com-
piled for.

The above-described techniques are used to load boot
driver, cpu driver, and init.

7.1.3 Preparing Second Core’s Memory

In this part, the memory for core 1 is statically allocated, using
core 0’s ram_alloc.

It is acknowledged that there are other better designs, such
as allowing the second core to request more memory on de-
mand. However, for simplicity in this milestone, the simpler
approach was chosen. Initially, not enough memory was allo-
cated, and after the core booted, memory errors were encoun-
tered. The second core’s memory was eventually finalized to
be 16M.

7.1.4 URPC Frame Structure and Setup

The URPC frame is divided into two page-sized sections: one
reserved for core 0 and the other reserved for core 1. This
data structure will be further explained in milestone 6.

Here are three frames that need to be passed to the second
core using the URPC frame, and they are copied into core
0’s part of the URPC frame, for core 1 to read and forge
capabilities. Since directly sending capabilities between cores
is not an option, the physical address and size of the frame
are sent instead, and it is the second core’s responsibility to
forge the capability.

1. Second Core’s Memory: Physical address and size of
the memory reserved for the second core.

2. bootinfo: A copy of the current core’s bootinfo.

3. mmstring: A copy of the current core’s mmstring. This
is required to find a program by name from bootinfo.

22

7.1.5 Setting Up core_data

Following the instructions, the following fields are set up in
core_data:

1. boot magic

2. CPU driver stack and entry point

3. command line arguments

4. second core’s memory and size

5. URPC frame’s physical address and size

6. newly created init’s base and size

7. source and destination core IDs

7.1.6 Memory Barrier and Cache Invalidating

In order for the second core to correctly read the data, cache
invalidations and memory barriers to overcome ARM’s weak
memory model are necessary. In the design, a set of memory
barriers are called before and after cache invalidations. Each
set of memory barriers includes dsb sy, dmb sy, and isb.

Cache invalidations are performed on every data structure
that could be shared between cores as listed below. Better safe
than sorry!

1. boot driver

2. CPU driver

3. kernel stack

4. second core’s memory

5. kcb

6. init/monitor

7. core_data

8. second core’s bootinfo

7.1.7 Spawning the Second Core

After setting everything up, invoke_monitor_spawn_core
is called to spawn the second core.

7.1.8 Waiting for Core 1’s Response

As later the UMP channel needs to be set up after core 1 boots,
core 0 needs to wait for core 1 to boot up. A simple polling
mechanism is used to wait for core 1 to write a number 1 into
its UMP buffer.

7.2 Second Core’s Self-Setup
This section describes the second core’s self-setup process
inside its init (app_main) after it boots up.

7.2.1 Forging Capabilities

As passing capabilities between cores is not an option, capabil-
ities need to be forged from the physical addresses and sizes
passed from core 0. The following capabilities are forged in
the second core’s init:

1. forging bootinfo capability into bootinfo’s known
cslot.

2. mapping bootinfo into virtual memory and assigning
global variable bi to it.

3. forging second core’s ram and calling mm_add to add it
to the memory manager.

4. creating a cnode at mmstring’s known cslot and copying
the passed mmstring content into it.

5. forging capabilities of modules in bootinfo into cnode
cnode_module. Because at this stage there is access to
the entire bootinfo, that will give the size and physical
addresses of all the modules, and they can be forged in a
loop.

7.2.2 Signal Core 0 Core Has Booted

At this stage, core 0’s coreboot function should be in a
polling loop waiting for core 1 to write data into its own UMP
buffer. Therefore, a number 1 is written into the beginning of
core 1’s UMP buffer.

7.3 UMP Polling
This section discusses the temporary solution in milestone 5
to receive messages from UMP polling - using a dedicated
polling process. First, the problem is described, followed by
the motivation, and the approach (for milestone 5 only).

7.3.1 Problem

In milestone 5, when a basic form of inter-core communica-
tion was implemented - allowing the first core to signal the
second core to spawn a process. The intuition was that the
second core would be in an infinite loop reading the UMP
frame, and upon receiving the data written from the first core,
it would spawn a process. The initial polling location selected
was the second core’s init process, and the message was
indeed received.

However, it was soon realized that the polling was blocking
the local LMP IPC because its waitset was being blocked
from dispatching in init.

23

7.3.2 Solution

The next solution considered was to create another thread-
/process to do the polling. Eventually, a process was chosen
because there is more familiarity with processes than threads.

In the polling process, it reads the UMP frame, which is
in a pre-defined cnode, in an infinite loop. When it receives
a message, it will use local LMP to spawn a process. After
spawning, it clears the message and re-enters the loop.

In milestone 6, this will be replaced by UMP polling chan-
nel waitset.

Figure 13: URPC Polling for M5

7.4 Interaction With Other Components
The core booting process relies on various components of the
overall system, including:

1. Memory Manager (MM)
After booting up, core 1 requires memory to operate
and a memory manager to allocate physical memory.
In our current design, the memory manager on core 1
can allocate and manage its statically allocated memory
resources, similar to the memory manager in core 0.

2. Paging System
The paging system plays a critical role during the core
booting process. By mapping the core data structures
into core 0’s address space, core 0 can pass the booting
information needed by the child core.

7.5 Limitations
7.5.1 URPC Polling

Using a dedicated process for polling is a temporary solution
rather than a proper one. It is slow and lacks a unified way to
manage message queues. Because only core 1 is polling and
not core 0, unless core 0 explicitly reads messages from core 1,
it will not be able to know the message. The current solution is
just a bare minimum to have some inter-core communication
and is not expandable. In milestone 6, a more sophisticated
solution—UMP channel waitset—will be implemented to
handle the messages.

7.5.2 Spawning Core Failure Handling

As described above, the current implementation relies on a
polling loop for core 0 to determine if core 1 has booted. This
design works fine when core 1 boots successfully, but if core
1 fails to boot, core 0 will be stuck in the polling loop forever.
A better design would include a timeout mechanism to handle
this situation.

7.5.3 Memory Allocation

The second core’s memory is statically allocated. A better
design would allow the second core to request more memory
on demand using URPC from core 0. However, this design
is still not perfect because it separates memory management
between cores, meaning a region of memory cannot be avail-
able to more than one core. A better design would involve a
centralized memory manager collaborating with all cores.

7.6 Retrospective and Improvements

This milestone provided the group with great insight into the
structure and design of Barrelfish because it required digging
into resources that are already available on core 0, in order to
set up core 1. For example, when initially trying to spawn a
process in core 1’s init, it was impossible to get the module
from the bootinfo by providing its name. Later, it was found
that this was due to the mmstring not being present in core 1,
which is a field automatically set up in core 0. Although this
required some digging, the group now understands how the
system finds a program’s memregion just by its path, which
was a black box in milestone 3.

The group also made a great design decision in this mile-
stone: separating the URPC frame into two parts, one for core
0 and one for core 1. Although this design is not discussed
yet (as it is a part of milestone 6), it was proposed in this
milestone and was a great design decision.

8 Milestone 6

In this milestone, we refined and improved our inter-core
communication by implementing User Level Message
Passing (UMP). Compared to previous milestones, during
this milestone we had the most freedom to experiment and
create our own designs with it’s own benefits and trade-offs.
Additionally, this milestone made us go back and change
several aspects of our design, in order to better accommodate
communicating between cores.

24

8.1 Data Structures
8.1.1 Shared Frame

As explained in Milestone 5, we used the shared URPC frame
to communicate between the cores. This frame is divided in
half, with the first half reversed for communication to/from
the parent core (core 0), and the second being used for the
child core (core 1). The send frame for one core is the receive
frame for the other, and vice versa.

Each divided half of the frame is further broken down into
the following sections:

1. Head pointer - The current head pointer of the ring
buffer (64 bits)

2. Tail pointer - The current tail pointer of the ring buffer
(64 bits)

3. Ring Buffer - The actual ring buffer, holding up to 8
messages.

Figure 14: Shared Frame

8.1.2 Messages

Messages for UMP were designed to match as closely as
possible to the messages sent using LMP. This was a design
decision to enable us to easily translate between LMP and

UMP requests with minimal changes.

Our UMP messages are defined as 64 bytes, divided into 8
words, of 8 bytes in length.

Additionally, our messages are sent using the following
definition:

1. Header - The 4 most significant bytes are reserved for
the PID of the process that is sending the message, the 4
least significant bytes are reserved for the message type.
The message type definition is shared with LMP (see
Milestone 4).

2. Capability Base Address (optional) - If ram/a frame is
being sent, this message will be the base address

3. Capability Size - If ram/a frame is being sent, this mes-
sage will be the size of the capability.

4. The rest of the message has no official standard

The header requiring the PID of the process that sent the
message is done so that we can easily tell from an incoming
message over the UMP channel which process had initially
sent it, in order to easily route the responses back.

Figure 15: UMP Message Format

8.2 API
To send UMP messages, we defined a separate API outside
of AOS_RPC, exclusively for sending messages over UMP.
Since the mechanisms required for creating, sending, and
receiving UMP messages are unrelated to LMP, and so this
decision was made to reduce code duplication, in addition for
allowing the user to explicitly send a UMP message without
having to go through the AOS_RPC API.

This API was created to match as closely as possible to
that of AOS_RPC, both because of inspiration, and to keep
API calls consistent for the end user. We defined API’s for:

25

1. Initializing UMP connection

2. UMP Handshake

3. Receiving UMP messages

4. UMP message routing

5. Sending UMP messages

6. Forwarding the UMP message to a process using LMP

Additionally, there are functions easily sending specific
UMP messages, such as:

1. Spawning with command line / default arguments

2. Suspending, Resuming, Waiting, and Killing processes

3. Getting Meta-data, like status, exit code, and PID of
processes

4. Sending numbers

5. Requesting Ram

The complete list of API functions can be found in the
appendix.

8.3 Changes from Previous Milestones
During this milestone, there were many changes made to
older milestones in order to accommodate sending messages
between different cores. These were required because of a
need to be able to find which core a message originated from,
and which process on the other core sent the message.

Due to this, there were changes to the allocation of PID’s,
and additional meta-data was added to the LMP message
headers.

8.3.1 PID’s

Given each process on a core has a unique PID, PID’s were
decided as a good way to track which process a message
request came from. Previously in Milestone 3, PID’s were
assigned using an incrementing counter stored in a global
variable. While this worked at the time, this would mean
that all PID’s within a core were unique, but there may be
duplicate PID’s across cores.

In order to make the PID a useful identifier for processes
across cores, the PID was changed to also contain meta-data
on which core it’s corresponding process was running on.
Thus, the most significant bit of the PID was changed to
indicate which core the process was running on, being 0
for core 0, and 1 for core 1. A single bit is enough for our
purposes, since our implementation only has 2 cores to work

with.

Thus, with the new PID’s, we can determine which core a
PID corresponds to by looking at the most significant bit.

8.3.2 LMP Messages

Previously during Milestone 4, the first word (the header) of a
message contained the enum type for what message it was for,
ex. AOS_RPC_HANDSHAKE. This worked great for intra-core
communcation between processes, since the init process has
access to all endpoint capabilities to the LMP channels for
the processes running on the same core. During milestone 6,
we included the additional meta-data of the sending process
PID as part of the header. This was done to keep messages on
LMP and UMP to be as similar as possible, so that translation
between the two protocols could be simpler. Adding this meta-
data also made it easier to track which process had sent certain
messages, which was useful (as later explained in algorithms),
to forward messages received by init over UMP to be sent
back to the corresponding process.

8.3.3 UMP Server

In milestone 5, we had an initial implementation of a UMP
server, similar to init, with an instance running on each core.
During this milestone, we decided to abandon this approach
in favour of waitsets, which is further explored later in this
report.

8.3.4 Initializing UMP Communication + Handshake

UMP initialization stays mostly unchanged compared to mile-
stone 5. The key differences are as follows:

1. Messages now follow the new message definition, where
the initial message contains all the information necessary
for the new core to boot

2. After successfully calling
invoke_monitor_spawn_core, core 0 will regis-
ter a polled-waitset on the URPC frame to receive
messages from core 1

3. Once the core 1 boots, it will establish a polled-waitset
to receive messages from core 0

4. Once the core 1 boots, it will send and ack to core 0

8.4 Overall Design
Our approach to intra-core communication builds upon our
original design, where init functions as a central server.
Similar to our implementation of RPC over LMP, child
processes act as clients, using the centralized init server
for communication. Now, we have extended init’s role to

26

handle inter-core communication via UMP - init now routes
messages from child processes for the other core to the other
core through the UMP channel, and routes responses from
the other core back to the sending child process.

The decision to route all UMP messages through init
to be forwarded was a pragmatic one. Firstly, our LMP
messages from milestone 4 was implemented using a single
channel to init, and so going with this approach let us build
on top of our current design, rather than building an entirely
separate system. Secondly, there is only a single init
process, and one URPC frame - coupling the two concepts
together alleviated some of the mental overhead of reasoning
messages. Finally, having only init read and write to the
shared buffer helps reduce concurrency issues, since there is
only one process to account of performing all the actions.

At a high level, our inter-core communication works as
follows:

1. A child process wants to send a message to the other
core. It will compose this message, and send it to it’s
init process running on it’s own core

2. The init process receives the message from the child
process and parses it

3. If the message is destined for the other core, it will for-
ward it to the other core over the UMP channel

4. The init process on the other core receives the message
and parses it

5. Based on the message, it will perform some actions,
compose a response, and send the response back over
the message buffer

6. The init process receives the message from the other
core, parses it

7. The init process determines the message as a response,
and forwards it to the waiting child process

The following subsections will describe the lower-level
details of the implementation

8.4.1 Composing Messages

Typically, if UMP is invoked through the AOS_RPC API, it
will need to translate the input LMP message into a UMP
message. Given we have taken the time to make the API’s as
similar as possible - this is trivial. We simply keep the same
header from the LMP message, and then transfer the contents
of the message into the UMP message, ignoring the endpoint
capability. Typically this results in a near 1-1 mapping, where
the first word of a LMP message will be exactly the same as

the first word of a UMP message.

Transferring Capabilities
The one exception to the easy translation is with transferring
RAM and frame capabilities, which are required for RAM
requests, and large messages. In LMP, this is achieved by
sending the capref in addition to the size of the RAM/Frame
region, and then allocating it into the receiving CSpace. In
UMP, this isn’t possible, because capref’s are not valid
across cores.

In order to overcome this, we instead send the capability’s
physical base address, as well as the size of that capability as
part of the message. When this is done, we assume that the
other core now has total ownership of that resource.

8.4.2 Sending Messages/Responses

Sending Messages When init receives a message, it needs
to be able to determine if the message is intra-core, or
inter-core. The process of routing sent messages depends on
both the contents of the message, as well as the headers.

When sending a message, typically most of the AOS_RPC
API’s provide a mechanism that allows us to easily deter-
mine which core it is for. For example the miscellaneous
spawn_with_* commands have the core number as a
parameter - if the core specified is not our core, we simply
forward the request to the other core. Other messages, like
proc_mgmt_get_name, have a PID as an input. Since we had
changed the PID to have it’s most significant bit represent the
core that it is running on, if we find that the PID corresonds
to the process on the other core, we also forward the response
to the other core.

This is also true for the process management functions
within proc_mgmt, if an invocation specifies a different core,
it will forward that request to the other core via UMP.

For requests that both do not have a either a core or PID
argument, our policies are that these commands must be
issued using our UMP endpoints directly, which are specified
in the Appendix. This design decision was made because our
design would not be able to determine which of either LMP
or UMP would be required, since there is no specificity of
which core the user wants to send the request to.

Tracking Sent Messages

Once we send a message, we store meta-data in a doubly
linked-list in order to properly forward the response back once
it is received. In particular, the list stores:

1. The PID of the sending process - This is stored so we
can associate the response back to this process

27

Figure 16: UMP Message passing

Figure 17: UMP Response Linked List

2. The message type of the sent message - This is stored
so that if a process sent multiple messages, we can tell
them apart

3. The actual message that was sent - This is stored so that
once the response is received, we can return values if
pointers were provided

4. The endpoint capability of this process - This is stored
so that we can forward the response

When the node is added, it is simply added to the front of
the list. This was because there is no guarantees in what order
responses will come in, and so there is no way to optimize the
list for parsing responses, and thus we optimize the runtime
of adding to O(1).

Road not taken - Alternative Data Structures
A linked list data structure was chosen mostly for it’s
simplicity. Since a single process can send multiple messages
over UMP, and send messages of the same type, it limits the

potential optimizations that could be implemented.

An alternative data structure could be a hashmap. A
hashmap is appealing because every process already has a
unique "key" identifier, being the PID. Additionally, this
idea was attractive because hashmaps have O(1) lookup
times, which in principle could lead to performance increases.
However, this was not pursued further upon realization that a
single process could send multiple messages, and multiple
messages of the same type. This would mean that we would
likely need the value of the hashmap field to be the head of a
linked list, in order to track individual messages sent by the
process.

This would increase complexity immensely, since we
would have all the complexity of a linked list, in conjunction
to all the complexity of a hashmap. Finally, our message
buffer was only able to hold up to 8 messages in flight at
a given time, meaning that our data structure would only
need to contain up to 8 elements. With this consideration, the
hashmap would likely only decrease performance, since it
would bring along much more overhead than just traversing a
linked list.

Sending Responses

When init is routing a response instead of a message, it
will parse the header to get it’s PID. If the PID is originates
from the other core, we forward the message over the UMP

28

Figure 18: Alternative Hashmap

channel. When we do this, we do not expect a response back,
and do not track any meta-data.

8.4.3 Sending Messages - Writing to the Ring Buffer

As previously explained during Milestone 5, the shared
URPC frame is used to hold two ring buffers to sending
and receiving messages. The ring buffer is an efficient data
structure for inter-channel communication since it maintains
the semantics of a FIFO message buffer, but is well designed
for a fixed-size memory region.

The design follows a classic producer-consumer model,
with the sender (producer) writing data into the buffer, and
the receiver (consumer) reading data from it. Communication
proceeds through careful use of the head pointer and tail
pointer, which are manipulated in a circular manner to
maintain the FIFO order.

When a init wants to send a message, it writes to the
memory position pointed to by the head pointer, in the
other core’s receive ring buffer. However, before writing, it
ensures there is enough available space by checking if the
head pointer would collide with the tail pointer, preventing
message overwriting. Once the message is written, the head
pointer advances, wrapping back to the beginning of the
buffer if necessary.

Conversely, when init wants to read a message, it checks
whether there are unread messages by comparing the head
pointer with the tail pointer. If messages are available, init
reads the data at the position indicated by the tail pointer and
then increments the tail pointer in a circular manner, until the
buffer is considered empty.

Currently in our design, if the ring buffer is full, and init
attempts to send additional messages, it will result in an er-
ror, since we there is not enough memory to send the message.

8.4.4 Receiving Messages - Reading from the Ring
Buffer with Waitsets

Each core has a polled-waitset registered on it’s receive buffer.
This waitset continually polls on the ring buffer, creating an
interrupt when the buffer is no longer empty. This message is
then read and routed, which increments the tail pointer, and
the waitset is re-registered onto the receive buffer.

8.4.5 Road Not Taken - Monitor Process

Initially, our design during Milestone 5 had a separate
process on each core dedicated to receiving messages. This
decision was made to mimic the "monitor" process that exists
in barrelfish upstream to coordinate messages between the
cores. This process would continually poll the receive buffer,
and when a message arrived, it would send a LMP message
to init to be routed and managed.

While this designed worked for the simple implementation
in milestone 5, it quickly became apparent that this solution
was not optimal, due to the additional complexity of managing
and launching a separate process.

1. This solution introduced potential race conditions, where
the buffer could fill up because the process hadn’t been
launched yet

2. Lead to potential user error, where multiple "monitor’s"
could potentially be created - or additional work required
to ensure this couldn’t happen

3. Unfamiliar API - since we would be designing this from
scratch with no framework, the API that was established
to use was unintuitive and did not match the rest of the
message passing algorithms

Thus, we decided to use polled waitsets, in order to avoid
continually polling the channel to see if messages have ar-
rived.

8.4.6 Routing Received Messages

After the message is received, we will need to figure out what
to do with it.

Commands/Requests
For these kinds of messages, init will execute the com-
mand/request that the message asked for. Once this is
completed, The response is created, and sent back over the

29

UMP channel. See sending responses for more details.

Responses
When it is determined that a response was received, init
will look up in the linked list data structure for the node
that corresponds to this response using the PID from the
response’s header, and the type of response the message is
for. If the node is found, the response values are populated
if there are any, and then the response is sent back to the
other process using the stored endpoint capability. Once the
response is sent back, the corresponding node in the linked
list is removed.

If the response node is not found, we will instead return an
error.

8.5 Interaction With Other Components
The RPC system built on top of the UMP channel interacts
with different components in the system:

1. RPC over LMP
As introduced in the current milestone, anytime a child
process in a core wants to interact with another core, it
first routes its message to its local init by using RPC
over LMP and waiting on its LMP channel. Similarly,
once the response is returned, the local init parses it
and sends the message to the registered child process
through LMP channel.

2. Paging System
RPC over UMP interacts with the paging system in multi-
ple ways. The URPC frame is mapped to init’s address
space using the paging system, so it can be read and
written by the init process during RPC over UMP.

3. Process Management
RPC over UMP facilitates cross-core process manage-
ment by actively gathering process management infor-
mation from both cores. This involves merging the infor-
mation collected by two init processes, which serves
as the process managers on both the parent core and the
child core.

8.6 Limitations
The limitations of our design partially come from the same
limitations of our system from milestone 4.

Much like milestone 4, RPC over UMP is raw, flat, and
lacks clear abstractions or layered separation. The messaging
layer, responsible for marshaling messages, and the transport
layer, responsible for sending messages, are heavily conflated.
Thus, we had to develop an entirely alternative system in
order to extend the functionality over a separate channel. This

difference may be confusing to some users, where certain
AOS_RPC commands are able to work over UMP, and others
require special handling.

Additionally, the API’s that were developed much more
bare bones than those that were provided for LMP. While we
did establish a protocol and standard, there is no enforcement
on how these are composed to be sent, an no well defined
process for parsing upon receiving - the end user needs to
explicitly define a function to properly parse the messages
sent over the channel.

Finally, in our current design, each buffer can only support
up to 8 in-flight messages before filling up, and once the
buffer is full, all attempts to write messages fill fail. This
is unintuitive to the end user, and the end user of the UMP
channel will need extra overhead to manage this resource
limitation.

8.7 Retrospective and Improvements

In order to support more in-flight messages in the future, an
additional data-structure could be created to act as a queue
or buffer for messages that have yet to be written to the
URPC frame. This would simplify the use of the protocol
massively, as the consumers of the API would have the
issue of a full buffer abstracted away. However, this has it’s
own challenges, since it would require additional overhead
and mechanisms in order to detect when the buffer is full,
and only then begin polling to write new messages as it clears.

In retrospect, if our milestone implementation was more
fleshed out, and had more time had been spent creating a
well defined message sending protocol, the implementation
portion of this milestone could have gone much smoother. As
discussed, there were many changes that needed to previous
milestones in order to provide full UMP message passing
functionality. This milestone highlighted the importance of
the benefits of having a design be correct the first time, but
also helped us learn to be flexible, and pivot our previous
ideas to account for new requirements.

Beyond technical challenges, this milestone also deepened
our understanding of team management and dynamics,
particularly as this was the final milestone of the term,
where the team had to balance many other deadlines,
fixes and improvements to other parts of the system, and
composing this report. Coordinating schedules, managing
task dependencies, and maintaining effective communication
became more challenging. By navigating these challenges,
we improved our ability to distribute workload effectively
and maintain productivity under pressure.

30

Figure 19: UMP Message passing Continued

9 Conclusion

Finally, we have reached the end of the semester, marking the
conclusion of this project and the course. This journey has
been both rewarding and challenging, blending moments of
accomplishment with frustrations. It demanded much more
than technical skills—it required us to address underspecified
problems with creative solutions, collaborate effectively as a
team, manage time under pressure, and tackle unexpected ob-
stacles. Despite the difficulties, we have grown significantly,
gaining invaluable lessons and skills along the way.

One of the most memorable technical challenges occurred
during the development of the virtual memory management
system in the first half of the course. Initially, we pursued
a tree-like structure, which seemed promising but quickly
became overly complex and unmanageable (see Section 3.1).
Recognizing its flaws, we met as a team to explore alternative
designs and ultimately adopted a simpler, more efficient
structure. This experience emphasized the importance of
evaluating design alternatives early and remaining flexible in
our approach—an insight we aim to carry forward into future
endeavours.

The second half of the project proved even more demand-
ing than the first three milestones. As discussed in Section
6, the raw design of RPC over LMP created significant
challenges, especially during the final milestone, where we
integrated RPC over UMP. To enable efficient cross-core
communication while reusing previously implemented RPC
functions, we had to design new UMP APIs that seamlessly
connected with our existing RPC calls. This effort was

fraught with unexpected issues, such as difficulties extracting
return values from receive handlers or timing out for earlier
milestones’ tests. These challenges underscored the critical
importance of thoughtful design. Without careful planning
during the design phase, the system became difficult to extend
and maintain, leading to unnecessary chaos and inefficiency.

On the non-technical side, our team dynamics evolved as
the semester progressed. While we grew closer and more
cohesive, coordinating schedules and balancing workloads
became increasingly difficult. To address these challenges,
we encouraged open and early communication among team
members. This proactive approach allowed us to identify
bottlenecks, redistribute tasks to accommodate personal
schedules, and maintain steady progress wherever possible.
Fostering a collaborative and supportive environment was
crucial in overcoming these hurdles and delivering our final
project.

Looking back, this project has provided us with valuable
transferable lessons and skills that we will continue to refine
in the future:

1. Invest time in design: Developing systems of signifi-
cant scale and complexity requires dedicating time to
read, understand, and design. Far from being wasted, this
effort is crucial for building robust, long-lasting systems.

2. Be flexible and evaluate alternatives: Exploring multi-
ple design options, even through quick sketches or rough
diagrams, can help identify potential pitfalls and prevent
unnecessary complications. Flexibility in design choices
ensures the system remains adaptable and efficient.

31

3. Foster effective teamwork: Successful collaboration
extends beyond task division. It involves understanding
task dependencies, proactively seeking and offering help,
and maintaining consistent communication. Building
trust and leveraging team members’ strengths enable the
group to adapt to challenges and achieve shared goals
under tight deadlines.

There are countless more lessons we’ve learned along the
way, too many to list here. As we conclude, we would like
to thanks to the course team that guided and supported us
throughout this journey. Thank you for helping us navigate
this challenging but deeply rewarding experience.

9.1 Acknowledgement
This report was written with the assistance of GitHub Copilot
and ChatGPT. It only fixes the grammar and sentence structure
and does not create any content.

32

10 Appendix

10.1 Appendix A

1 /**
2 * \file
3 * \brief UMP Channel for Barrelfish
4 *
5 * This header defines structures and functions for managing UMP (User Message Passing)

channels
6 * and their integration into Barrelfish’s messaging system. It includes functions for

initializing
7 * UMP channels , sending and receiving messages , handling process management , and managing
8 * responses to RPC calls.
9 */

10

11 #ifndef _LIB_BARRELFISH_UMP_MESSAGES_H
12 #define _LIB_BARRELFISH_UMP_MESSAGES_H
13

14 #include <sys/cdefs.h>
15 #include <aos/waitset.h>
16 #include <assert.h>
17 #include <aos/aos_rpc.h>
18 #include <proc_mgmt/proc_mgmt.h>
19

20 /**
21 * \brief Structure for initialization information shared between cores.
22 */
23 struct init_struct {
24 size_t ram_size_bytes; ///< Size of available RAM in bytes
25 genvaddr_t ram_paddr; ///< Physical address of RAM
26 size_t bootinfo_frame_bytes; ///< Size of bootinfo frame in bytes
27 size_t bootinfo_frame_paddr; ///< Physical address of bootinfo frame
28 size_t mmstring_size; ///< Size of the memory management string
29 genvaddr_t mmstring_paddr; ///< Physical address of the memory management string
30 };
31

32 /**
33 * \brief Structure representing a core message.
34 */
35 struct core_msg {
36 uint64_t arg[8]; ///< Array to store arguments of the message
37 };
38

39 /**
40 * \brief Circular buffer for storing core messages.
41 */
42 struct core_msg_buf {
43 uint64_t head_ptr; ///< Head pointer for reading messages
44 uint64_t tail_ptr; ///< Tail pointer for writing messages
45 uint64_t padding[6]; ///< Padding for alignment
46 struct core_msg buf[63]; ///< Array to store core messages
47 };
48

49 /**
50 * \brief UMP channel structure.
51 */
52 struct ump_chan {

33

53 struct waitset_chanstate waitset_state; ///< Waitset state for polling
54 struct core_msg_buf *ump_send_buf; ///< Pointer to the UMP send buffer
55 struct core_msg_buf *ump_recv_buf; ///< Pointer to the UMP receive buffer
56 bool setup; ///< Flag indicating whether the channel is

initialized
57 };
58

59 /**
60 * \brief Response node for tracking asynchronous responses in UMP communication.
61 */
62 struct ump_response_node {
63 struct lmp_chan *lc; ///< Pointer to the LMP channel for the response
64 domainid_t pid; ///< Process ID of the client
65 enum aos_rpc_type type; ///< Type of the RPC response
66 struct ump_response_node *next; ///< Pointer to the next node in the list
67 struct ump_response_node *prev; ///< Pointer to the previous node in the list
68 struct core_msg *resp; ///< Pointer to the response message
69 bool done; ///< Flag indicating whether the response is

complete
70 };
71

72 /**
73 * \brief Get the UMP channel.
74 *
75 * \returns A pointer to the current UMP channel.
76 */
77 struct ump_chan *get_ump_chan(void);
78

79 /**
80 * \brief Initialize a UMP channel.
81 *
82 * \param channel Pointer to the UMP channel structure.
83 * \param base Base address of the UMP shared memory.
84 * \param core Core ID to associate with the channel.
85 *
86 * \returns SYS_ERR_OK on success , or an error code on failure.
87 */
88 errval_t ump_chan_init(struct ump_chan *channel , uintptr_t base , coreid_t core);
89

90 /**
91 * \brief Register a receive handler for the UMP channel.
92 *
93 * \param channel Pointer to the UMP channel structure.
94 * \param ws Pointer to the waitset for event handling.
95 * \param closure Closure to execute when a message is received.
96 *
97 * \returns SYS_ERR_OK on success , or an error code on failure.
98 */
99 errval_t ump_chan_register_recv(struct ump_chan *channel , struct waitset *ws, struct

event_closure closure);
100

101 /**
102 * \brief Send a message over a UMP channel.
103 *
104 * \param buf Pointer to the UMP message buffer.
105 * \param msg Pointer to the message to send.
106 *
107 * \returns SYS_ERR_OK on success , or an error code on failure.
108 */

34

109 errval_t ump_send(struct core_msg_buf *buf, struct core_msg *msg);
110

111 /**
112 * \brief Receive a message from a UMP channel.
113 *
114 * \param buf Pointer to the UMP message buffer.
115 * \param msg Pointer to the structure to store the received message.
116 *
117 * \returns SYS_ERR_OK on success , or an error code on failure.
118 */
119 errval_t ump_recv(struct core_msg_buf *buf, struct core_msg *msg);
120

121 /**
122 * \brief Handle received messages on a UMP channel.
123 *
124 * \param arg Pointer to additional arguments for the handler.
125 *
126 * \returns SYS_ERR_OK on success , or an error code on failure.
127 */
128 errval_t ump_recv_handler(void *arg);
129

130 /**
131 * @brief Registers a callback for a specific response type and process ID.
132 *
133 * This function creates a new response node and links it to a global list of
134 * response callbacks. It allows the system to handle specific responses by
135 * matching the process ID and RPC type.
136 *
137 * @param[in] lc Pointer to the LMP channel for sending responses.
138 * @param[in] msg_pid The process ID associated with the message.
139 * @param[in] resp_type The expected type of the response.
140 *
141 * @returns A pointer to the created response node on success.
142 */
143 struct ump_response_node *ump_register_response_callback(struct lmp_chan *lc, domainid_t

msg_pid ,
144 enum aos_rpc_type resp_type);
145

146 /**
147 * @brief Forwards a UMP response to the appropriate client based on the message type and

process ID.
148 *
149 * This function searches the list of registered response callbacks for a match
150 * with the given message type and process ID. If a match is found , it forwards
151 * the response using LMP or marks the response as completed.
152 *
153 * @param[in] msg Pointer to the UMP message to forward.
154 * @param[in] msg_pid The process ID associated with the message.
155 * @param[in] resp_type The type of the response to forward.
156 */
157 void ump_forward_response(struct core_msg *msg, domainid_t msg_pid , enum aos_rpc_type

resp_type);
158

159

160 errval_t ump_proc_spawn_with_cmdline(struct ump_chan *chan , const char *cmdline , coreid_t
core ,

161 domainid_t *newpid);
162 errval_t ump_proc_spawn_with_default_args(struct ump_chan *chan , const char *path , coreid_t

core ,

35

163 domainid_t *newpid);
164 errval_t ump_proc_resume(struct ump_chan *chan , domainid_t pid);
165 errval_t ump_proc_suspend(struct ump_chan *chan , domainid_t pid);
166 errval_t ump_proc_mgmt_ps(struct ump_chan *chan , struct proc_status **ps, size_t *num);
167 errval_t ump_proc_mgmt_get_proc_list(struct ump_chan *chan , domainid_t **pids , size_t *num);
168 errval_t ump_proc_get_pid_by_name(struct ump_chan *chan , const char *name , domainid_t *pid);
169 errval_t ump_get_status(struct ump_chan *chan , domainid_t pid, struct proc_status *status);
170 errval_t ump_get_name(struct ump_chan *chan , domainid_t pid, char *name , size_t len);
171 errval_t ump_proc_mgmt_terminated(struct ump_chan *chan , domainid_t pid, int status);
172 errval_t ump_proc_mgmt_wait(struct ump_chan *chan , domainid_t pid, int *status);
173 errval_t ump_proc_mgmt_register_wait(struct ump_chan *chan , domainid_t pid , void *resp_chan ,
174 struct waitset *ws);
175 errval_t ump_proc_mgmt_kill(struct ump_chan *chan , domainid_t pid);
176 errval_t ump_proc_mgmt_killall(struct ump_chan *chan , const char *name);
177

178 #endif

Listing 1: UMP Channel API

36

	Introduction
	Overall Design
	Milestone 1
	Data Structure
	Algorithms
	MM Add
	Alloc/Alloc Aligned
	Free
	Partial Frees
	Slab Refill
	Metadata

	Interaction With Other Components
	Limitations

	Milestone 2
	Initial Approach
	Data Structure
	Problems

	Final Approach
	Data Structure

	Algorithms
	Alloc
	Free
	slab Refill

	Interaction With Other Components
	Limitations
	Retrospective and Improvements

	Milestone 3
	Spawning
	Data Structure
	Elf Parsing
	Set-up CSpace
	Set-up VSpace
	Elf Loading
	Set-up Dispatcher
	Set-up Environment
	Start, Kill, Resume, and Suspend

	Process Management
	Data Structure
	Algorithms

	Interaction With Other Components
	Limitations
	Retrospective and Improvements

	Milestone 4
	Data Structure
	AOS RPC Set-up
	Overall Design
	Channel
	Message Structure
	Child Processes as Clients
	Init Process as Server

	Handshake
	Road Not Taken: Where to put handshake?

	Send Number
	Send String
	Drawback
	Possible Fix: Sending Large Strings

	Serial RPC
	RAM Request
	Spawn With Command Line/Default Arguments
	Spawn With Capabilities
	Process Management
	Suspend and Resume
	Wait
	Exit, Kill and Kill All
	Thread Safety
	Problems
	Solution

	Interaction With Other Components
	Limitations
	Retrospective and Improvements

	Milestone 5
	Booting a Second Core
	Preparing Data Structures
	Preparing ELFs
	Preparing Second Core's Memory
	URPC Frame Structure and Setup
	Setting Up core_data
	Memory Barrier and Cache Invalidating
	Spawning the Second Core
	Waiting for Core 1's Response

	Second Core's Self-Setup
	Forging Capabilities
	Signal Core 0 Core Has Booted

	UMP Polling
	Problem
	Solution

	Limitations
	URPC Polling
	Spawning Core Failure Handling
	Memory Allocation

	Retrospective and Improvements

	Milestone 6
	Data Structures
	Shared Frame
	Messages

	API
	Changes from Previous Milestones
	PID's
	LMP Messages
	UMP Server
	Initializing UMP Communication + Handshake

	Overall Design
	Composing Messages
	Sending Messages/Responses
	Sending Messages - Writing to the Ring Buffer
	Receiving Messages - Reading from the Ring Buffer with Waitsets
	Road Not Taken - Monitor Process
	Routing Received Messages

	Limitations
	Retrospective and Improvements

	Conclusion
	Appendix
	Appendix A

